OneDegree Hong Kong Limited Software Development Entrance Exam June 12, 2019
 Duration: 1 hour

Examiners: Thomas Huang, Ken Hung

Total Marks: 75 marks

Last Name:

First Name:

Signature:

Guidelines:

- You are expected to write your answers in the Python 3.0 language unless otherwise noted by the question
- Please write your answer in the space provided for each question. Use the back side of the sheets as needed
- This is a closed-book exam
- You may NOT use any unauthorized aids
- Please write neatly and legibly

Question	Marks	Question	Marks
1	5	6	10
2	10	7	10
3	10	8	10
4	10	Bonus	7
5	10		

Question 1

The following data structure is declared and initialized:

Write a few lines of code so that the key and value pairs are swapped, i.e., keys become values and values become their corresponding keys.

Question 2

Write a function that accepts one integer argument and determines whether the integer is a prime number. You may assume that the integer will be greater than or equal to one.

Question 3

If you were to design an indented URL generator today, how would you design it?

Question 4

Please briefly explain how the CORS mechanism works and its purpose.

Question 5

Please briefly explain how the HTTP Cache mechanism(Expires, Cache-Control, Last-Modified, Etag) works and its purpose.

Question 6

Given a non-empty array of integers, every element appears twice except for one. Find that single one.

Your algorithm should have a time complexity of O(n). Could you implement it without using any extra memory?

Example:

Input: [4,1,2,1,2]
Output: 4

Question 7

Suppose a website contains two tables, the Customers table and the Orders table. Write a SQL query to find all customers who never ordered anything.

Example:

Customers:

Orders:

Using the above tables as example, return the following:

```
+-----------+
| Customers |
+-----------+
| Henry |
| Max |
+-----------+
```


Question 8

Given a triangle, find the minimum path sum from the top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle:

```
[
            [2],
            [3,4],
        [6,5,7],
    [4,1,8,3]
]
```

The minimum path sum from top to bottom is 11 (i.e., $2+3+5+1=11$).

Bonus point if you are able to do this using only $\mathrm{O}(\mathrm{n})$ extra space, where n is the total number of rows in the triangle.

Bonus Question

Looking at the following code below, write down the final values of $A 0, A 1, \ldots, A 6$

```
A0 = dict(zip(('a','b','c','d','e'),(1, 2, 3,4,5)))
A1 = range(10)A2 = sorted([i for i in A1 if i in A0])
A3 = sorted([A0[s] for s in A0])
A4 = [i for i in A1 if i in A3]
A5 = {i:i*i for i in A1}
A6 = [[i,i*i] for i in A1]
print(A0, A1, A2, A3, A4, A5, A6)
```

